"BEIM ALTERN LÄSST DIE SPANNUNG NACH" -ERFASSUNG UND BESCHREIBUNG DER GUMMIALTERUNG

Dirk Lellinger*, Ingo Alig*, Thomas Kroth, Marc Wallmichrath *Bereich Kunststoffe, Fraunhofer LBF

🗾 Fraunhofer

Kontakt: <u>Dirk.Lellinger@lbf.fraunhofer.de</u> Tel: 06151-705-8667

Elastomerprodukte

Foto: Lanxess

http://www.nyhag.de/produkte/elastomere/

http://www.herbertbrandt.de/produkte/index.php http://www.elastogmbh.de/puteile_formteile.php

Motivation

- Verbesserte Schwingfestigkeitsuntersuchungen an Elastomerbauteilen: Lager, Dichtungen, O-Ringe, Walzen …
- Möglichkeit der Beschleunigung von Schwingfestigkeitsuntersuchungen durch thermische Voralterung ?
 - → Thermische Alterungsexperimente an Naturkautschuk-Compounds
 - → Kombination von Schwingfestigkeitsuntersuchungen und Elastomercharakterisierung zum Verständnis der Vorgänge während der thermischen Alterung
- Kontinuierliche und diskontinuierliche Messungen mit verschiedenen physikalischen und chemischen Methoden

Grundlagen

- Vernetzungsgrad und Art der Vernetzungspunkte bestimmen die physikalischen Eigenschaften der Elastomere
 - Chemische Vernetzungspunkte → Vulkanisation oder Alterung
 - Physikalische Vernetzungspunkte → Verschlaufungen, Polymer-Füller-Wechselwirkungen (zus. Füller-Füller-WW)

M_C – Molekulargewicht des Netzbogens

Konzept: Materialien und Alterung

- Naturkautschuk (NR) Compounds
 - mit typischem Additivpaket
 - schwefelvernetzt
 - ohne und mit Füllstoff (Ruß, 50 phr)
- Thermische Alterung bei verschiedenen Temperaturen
 - in Luft (aerobe Alterung)
 - in N₂ (anaerobe Alterung)

Konzept: Kopplung von Ermüdungsversuchen und Materialcharakterisierung

- Kraft- und weggeregelte Schwingfestigkeitsuntersuchungen
 - Wöhlerkurven \rightarrow Anzahl der Schwingspiele bis zum Versagen (MTTF)
 - Kraftgeregelt (konst. Spannungsamplitude)
 - Weggeregelt (konst. Dehnungsamplitude)
- Kontinuierliche und diskontinuierliche Pr
 üfung & Charakterisierung
 - Thermo-physikalische Eigenschaften
 - \rightarrow Netzwerkstruktur
 - Chemische Analyse von Extrakten und Pyrolyseprodukten
 - → Abbauprodukte und lösliche Bestandteile

Versuchsprogramm und Methoden

	$ \begin{array}{ c c c } \hline 90 \\ \hline [^\circ C] \end{array} \begin{array}{ c c c } \hline 110 \\ \hline [^\circ C] \end{array} \end{array} \begin{array}{ c c c } \hline N_2 \end{array} \begin{array}{ c c } O_2 \end{array} $	
r Probekörper ————	ر Parameter	Schwingfestigkeit ———
S2-Stab	100 Auslagerungs- [°C] temperatur	Lebensdauer- experimente
Prüfstab Rechteckig	N ₂ Auslagerungs- medium	FMM Konst. Amplitude + Kraftgeregelt
Prüfdisk Rund	0,1 Weg-/bzw. Kraftverhältnis R _{s/F}	Konst. Amplitude + Weggeregelt
- Materialcharakterisierung		
Stufenweise Zugprüfung	DVR Druckverformungs-	Quellungs- experimente
Spannungs- relaxation	► Festkörper-NMR	Chemische Analytik Flüssigkeits-NMR FTIR
Dynmechanische Analyse		MALDI-ToF-MS Pyrolyse-GC

Methoden Schwingfestigkeit

- Schwingfestigkeitsversuche bei Raumtemperatur mit kontinuierlich begleitender Analyse
- Umrüstung Prüftechnik auf S2 Stäbe (kleine Kräfte, Zugschwellbelastung, Einspannung)

Kraftgeregelte Schwingfestigkeitsversuche

Anzahl der Schwingspiele bis zum Versagen

Thermische Alterung @ 110 °C / 0, 1, 2, 4, 8, 16 und 32 Tage Versuchstemperatur: 25°C

Weggeregelte Schwingfestigkeitsversuche

Anzahl der Schwingspiele bis zum Versagen

Thermische Alterung @ 100 °C / 0, 1, 2, 4, 8, 16 und 32 Tage

Kraftgeregelte und weggeregelte Schwingfestigkeitsversuche

Kraft-Weg-Hysteresekurven

Thermische Alterung @ 110 °C / 0, 1, 2, 4, 8, 16 und 32 Tage

Umrechnung von Weg → Kraft

Übertragung der für in den Hysteresen erreichten Kraftwerte als Bewertungsgrundlage für die Wöhlerlinie

Weg->Kraft	s=60/6	s=25/2,5
ungealtert	22,8/1,65	13,2/1,1
2 Tage	31,1/2,3	15/1,2
8 Tage	40,1/0,6	19,8/0,6
16 Tage	39/0,1	18,9/0,6

- → Berechnung Kraftamplituden
- → Regression der Wöhlerlinien auf Basis der Kraft

Vergleich der Versuchsarten (kraft- und weggeregelt)

Am Beispiel ungealterter Proben, ähnliche Streuung für alle Alterungszeiten

⁻ S2s_000_000 - S2_000_000

100 [°C]

Zusammenfassung Wöhlerversuche Wöhlerlinie und Netzwerkstruktur

0,1 _{R_F}

 N_2

110 [°C]

Fraunhofer

Physikalische und Chemische Elastomercharakterisierung

Methoden Dynamisch-mechanische Analyse (DMA)

M_c - Molmasse des Netzbogens

Ergebnisse Schubmodul aus DMA, Steifigkeit

Molekulargewicht des Netzbogens Dynamisch-mechanische Analyse (DMA)

Unterschiede sowohl in der Amplitude als auch im Anstieg zwischen ungealterten und gealterten Proben

100 [°C]

Ein exponentieller Abfall ist viel zu steil!

Summe von exponentiellen Abfällen mit charakteristischen Zeiten von 2 Punkten pro Dekade

[100 [°C] (mit

Prony-Serie (mit Regularisierung)

Veränderung des Anstiegs bei kurzen und langen Zeiten

Methoden Festkörper-NMR

- Gemessen werden
 - Spin-Spin-Relaxationszeit T₂
 - Magnetisierungsabfall M(t)
 - Anpassung von *M*(t) mit Gotlieb-Modell

Molekulargewicht des Netzbogens Festkörper-NMR

Thermooxidativer Abbau in Luft

Spannungsrelaxation Extrapolation durch Arrhenius-Gesetz

- Thermische Alterung in Luft
 - Netzwerkabbau durch thermo-oxidative Alterung

6-kanaliger Messaufbau für die Spannungsrelaxation

6-kanaliger Messaufbau für die Spannungsrelaxation

Methoden Druckverformungsrest

- *l*₀ Ursprüngliche Höhe
- I_1 Höhe des Abstandhalters
- *I*₂ Höhe nach der Entspannung

DVR = 100 \rightarrow Probe verbleibt in verformtem Zustand

DVR = $0 \rightarrow$ Probe kehrt zur Ausgangsdicke zurück.

Ergebnis Druckverformungsrest

- 100 % \rightarrow Probe verbleibt im verformten Zustand
 - 0 % \rightarrow Probe kehrt zur Ausgangsdicke zurück
- → DVR "sieht" hauptsächlich neue Vernetzungsbrücken ("Federn")

Methode

Chemische Analytik (z.T. an Extrakten)

- Flüssigkeits-NMR
- FTIR
- MALDI-ToF-MS
- Pyrolyse-GC

Zusammenfassung

Kopplung von Betriebsfestigkeitsuntersuchungen mit phys./chem. Charakterisierung einer Modellmischung auf Naturkautschukbasis zur Untersuchung der thermischen Alterung:

- Aufbau, Anpassung und Weiterentwicklung von physikalischen und chemischen Methoden zur Elastomercharakterisierung
- Einflusses der thermischen Voralterung auf die Schwingfestigkeit und phys.
 Eigenschaften, differenziert nach umgebendem Medium und
 Auslagerungstemperatur
- Zusammenhang von alterungsabhängigen Veränderungen der Molmasse des Netzbogens und der Schwingfestigkeit
- → Bereitstellung einer "Toolbox" zur Elastomerprüfung
- → Ableitung von zeitraffenden Alterungsprozeduren und Pr
 üfverfahren f
 ür Elastomermaterialien

Ausblick Schwingfestigkeitsuntersuchungen in 5% NaCl - Lösung

Tests in einer Wanne mit NaCl - Lösung

Ausblick Schwingfestigkeitsuntersuchungen in Kombination mit Salzsprühtest

Vielen Dank für Ihre Aufmerksamkeit!

